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Arithmetical degeneracies in simple quantum systems 

C Itzykson and J M Luck 
Service de Physique ThCorique, CEN Saclay, BP2, 91 191 Cif-sur-Yvette, Cedex, France 

Received 22 May 1985 

Abstract. We examine the ‘accidental’ level degeneracies occurring in the quantum 
mechanical problem of a free particle moving in a polyhedral box, when the problem is 
integrable. Some remarkable properties of the distribution of degeneracies are studied in 
several two-, three- and four-dimensional examples and are related to well known problems 
of number theory. The numerical results of exact enumerations are compared with analytical 
predictions, or with conjectured expressions in some cases. We consider in particular the 
asymptotic scaling form of the degeneracy distribution up to some maximal energy E, and 
the maximal degeneracy occurring for energies less than some given E. 

1. Introduction 

Simple quantum systems can exhibit unexpected features. We focus here on the 
spectrum of the Hamiltonian for a particle moving freely in a box, when the problem 
is integrable. This is a classroom example in any elementary exposition of wave 
mechanics. As Rayleigh observed [ 11, when discussing rectangular vibrating mem- 
branes (with sides a and b ) :  ‘when a2 and b2 are commensurable.. . the specification 
of the period does not completely determine the type. The full consideration of the 
problem.. . requires the aid of the theory of numbers’. 

The question of ‘accidental’ degeneracies has recently been revived in the physics 
literature by Berry [2]. A review of the Dirichlet problem is given by Kuttler and 
Sigillito [3], while the case of an equilateral triangular box is discussed by Pinsky [4]. 

The usual arguments in quantum mechanics suggest that degeneracies occur due 
to symmetries, whether manifest or ‘hidden’, with an associated group theoretical 
framework. This would, for instance, apply to the spectrum of a particle constrained 
to move on a sphere, but otherwise free. The accidental degeneracies do not seem to 
follow the same pattern, very much as the distribution of prime numbers cannot be 
described using an ‘elementary’ construction process. We shall see that this property 
is shared by the distribution of degeneracies in the examples that we shall study. This 
close relationship to number theory is at first somehow unexpected. 

The mathematical literature on these topics is abundant. In due course we shall 
quote a rather eclectic list of texts that we found useful, without any pretence at 
completeness nor accuracy-a measure of our ignorance. 

Take for instance the case of a particle in a two-dimensional square box of size a. 
In units of t i2a2/2ma2 the energy levels are the sums of two positive integers, and 
hence are themselves positive integers. Counting the points with integral coordinates 
inside a large circle, one deduces that the asymptotic density of levels is ~ 1 4 ,  i.e. 
slightly smaller than one. It is somehow surprising to discover [2] that the fraction of 
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integers belonging to the spectrum up to a maximal value E vanishes as (In E ) - ” 2  
when E tends to infinity. This, however, is not in contradiction with the asymptotic 
expansion for the integrated density of states, as developed in the general case by 
Balian acd Bloch [ 5 ] ,  as we shall see through examples. In three dimensions, for a 
cubic box, the density of states grows like 277 E”’.  But it turns out that asymptotically 
one-sixth of the integers d o  not belong to the spectrum. Fermat stated, and Euler and  
Lagrange proved [ 6 ] ,  that such vacancies d o  not occur in dimension four or greater. 

Our aim is to present these and similar results with a minimal appeal to number 
theory and  to show relationships between similar systems. In the first part we review 
some classical material on the integrable cases of the Dirichlet problem ( 5  2 )  and 
related number theoretical identities (0 3). Rather than discussing these identities in 
a pure arithmetical context, we have chosen to relate them to elementary quantum 
statistical problems. We obtain in particular a straightforward derivation of Jacobi’s 
triple product identity. In the second part ( 8  4) we study the modes for a square or 
equilateral triangular box, a problem investigated by Lam6 around 1850. The mathe- 
matical tools are Dirichlet series which generalise Riemann’s 4‘ function. We show 
that the kth moment of the distribution of degeneracies up  to some energy E scales 
like (In a result valid both for the square and equilateral triangle, and study 
some related aspects of this distribution. 

In the third part (0 5) we look at three- and  four-dimensional examples. We exhibit 
the finite lacunarity of the spectrum in three dimensions and conjecture the existence 
of a scaling form of the distribution of degeneracies in dimension three and higher. 

The theoretical predictions can be checked against numerical evidence. The latter 
also allows in certain cases an estimate of the errors. The values of the largest energies 
required to exhibit the trend to asymptotes strongly depend on the quantity under 
consideration. To obtain the data is quite easy using computer facilities for systematic 
enumeration. For instance, in figure 6 we plot values of E in reduced units up  to 
2 x lo’, but certain phenomena are already apparent for much smaller values, such as 
the Balian-Bloch oscillations or the finite lacunarity in three dimensions, where a 
maximal energy of a few hundreds is sufficient. A complete theory of the subdominant 
terms would lead us too far astray, into the realm of Riemann’s hypothesis. 

In the final section (§ 6) we speculate on the relation between degeneracies and 
sensitivity to perturbations and  suggest further lines of inquiry. 

An appendix gives an  elementary, albeit technical, proof of some formulae needed 
to compute the mode degeneracies in an equilateral triangular box or  its Cartesian 
square. 

2. Free particle in a box 

A free particle moving inside a box B in a Euclidean space of dimension d, with energy 
E, satisfies Schrodinger’s equation in the form 

This is Dirichlet’s problem. We assume the box to be compact and  bounded by finitely 
many plane walls. Applying the method of images, or Schwarz’s reflection principle, 
the problem is integrable when the group generated by the reflections in the walls 
provides a ‘tiling’ of all space. Such groups have been classified by Coxeter [7] and  



Degeneracies in simple quantum systems 213 

are related to the classification of semi-simple Lie algebras according to Cartan and 
Weyl. In such a case the wavefunctions and energy levels can be obtained explicitly 
using finite superpositions of plane waves according to the corresponding symmetry 
group. Integrability does not necessarily mean separability. The latter applies when 
the box can be identified with a Cartesian product of boxes in orthogonal subspaces. 
Richens and Berry [8] have coined the word ‘pseudo-integrable’ for the case when the 
dihedral angles of the box are fractional multiples of 7~ but the group of reflections 
fails to give a tiling of space. We hope to return to this case in a future paper. 

The simplest example is a two-dimensional rectangular box of sides a and b, a 
separable case. With n, and n2 positive integers, the wavefunctions and energies are 

As the simplest commensurate case we shall limit ourselves to a square 

h2T2 
2ma2 

a = b  E=---- (n:+ n:) n,, n 2 >  0. (2.3) 

One could also look at a triangle with angles (7r/2, ~ / 4 ,  ~ / 4 )  obtained by cutting the 
square in half along a diagonal. The corresponding eigenfunctions are obtained by 
antisymmetrising the previous ones in the interchange x a y ,  and the energy levels are 
the same, except for the restriction n, > n2. 

The construction of the solutions in the equilateral triangle case [4-91 illustrates 
the general principles [lo], so we shall repeat it here in some detail. The reflections 
in the walls of an equilateral triangle of side a generate a triangular lattice. The 
translation subgroup is generated by the periods a ( l  -j2), a(j-j2),  where j =  
exp(i27r/3) (see figure l(a)) .  Through the origin we have a representative of each 
family of parallel walls. Denote by R , ,  R2, R ,  the reflections through each of them, 

Figure 1. ( a )  The equilateral triangle and two fundamental periods. ( b )  Representative 
points of the states in momentum space. 
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and parametrise a point in the plane using the complex number z = x+jy. A funda- 
mental domain is 0 6 y s x and the Laplacian reads 

z = x + j y  A=$(d?;+a;+a:J.  (2.4) 

The point group generated by R1, R2, R, is isomorphic to the permutation group on 
three objects S,. Applying to any differentiable function p(x) the operator Ap(x) = 
Xres, (-1)’q~( y x ) ,  we obtain a similar function vanishing on the three lines (i) y = 0, 
(ii) x = 0, (iii) x = y. In the following table we list y ,  ( - l )yp(yx)  and the phase factor 
resulting from increasing x + x + a, or y + y + a for a plane wave p (x )  of the form 
exp[i(2~r/a)(Mx+ N y ) ] ,  where M and N are left unspecified, and L =  - ( M  + N ) .  

~~ ~~ 

1 exp[(2ai /a)(Mx+ N y ) ]  exp(2ni M )  exp(2ni N )  
RI -exp[(Zai/a)(Mx+ L y ) ]  exp(2ni M )  exp(2ni L )  
R2Rl exp[(2ni/a)(Lx+ M y ) ]  exp(2ni L )  exp(2ni M )  
R2 -exp[(Zaila)(Lx+ N y ) ]  exp(2ni L )  exp(2ni N )  
R,R,  exp[(2ai /n)(Nx+ L y ) ]  exp(2ai N )  exp(2ni L )  
R3 -exp[(2ni /a)(Nx+ M y ) ]  exp(2ai N )  e x p ( 2 ~ i  M )  

The choice 

exp(2~ri  M )  = exp(2~ri  N )  = exp(2~r i  L )  = exp(icu) (2.5) 
ensures that 9 = Ap is a solution of Schrodinger’s equation in the complete plane and 
vanishes on the three families of parallel walls, i.e. it is a solution in a triangular box, 
and one can show that all solutions have been obtained. From equation (2.5) 

9( x + a, y ) = 9 ( x, y + a ) = exp( i a )U( x, y ) (2.6) 
and 2 M  + N = n,, M - N = n2 have to be integers. Therefore 

with exp(3ia) = 1 

M = f( n ,  + nz) N = f( n ,  - 2n2) L = f( n2 - 2n,) 

2 7  2Tr 
3a 3a 

e ,=- (2x-y)  e2 = - (2y - x)  

( 2 . 8 ~ )  

2Tr 
3a 

e,= - - (x+y)  

(2.7) 

such that 

e, + e2 + e, = o e3s e 2 s  e , ~ 2 ~  
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exp(in,@,) exp(in28,) exp[i(n, + n2)e l ]  
qnl.n2(el,  e2, 0,) = exp(in,M exp(in2B2) exp[i(n, + n2)e2]  

exp(in,03) exp(in28,) exp[i(n, + n2)e,] 
(2.8b) 

The corresponding energies read 

n,> n2>0. (2.10) 

The states can be identified in a plot of (n, +in2)  as those in the first sector (see figure 
l b ) ,  with the energy proportional to the squared distance to the origin. 

In a similar fashion one could discuss the modes in a triangle with angles 
(7r/2, 7 /3 ,  7 r / 6 )  obtained by cutting the equilateral triangle along a mediatrix, and 
this would exhaust the integrable cases in two dimensions. 

In higher dimensions we shall content ourselves with separable problems, although 
the previous example could be generalised [ 101. Equation (2.8b),  for instance, exhibits 
the relationship between wavefunctions in an equilateral triangle and characters of the 
group SU(3). 

3. Arithmetic identities 

The identities discussed in this section are all classical [ 6 ,  11-14]. We feel nevertheless 
justified in giving an elementary exposition, related to simple problems in quantum 
statistics. 

Let us start with a one-dimensional gas of non-interacting fermions in a harmonic 
well with energy levels E ,  = ~ , ( 2 n  + 1). With T the temperature and p the chemical 
potential, the partition function is 

W 

z = x e x p [ ( p N - E ) / k T ] =  n c exp([p--0(2n+l)]N,/kT) 
n = O  N,=0,1 

X (3.1) 
= (l+yq2"+')  

n = O  

with the notation 

Y = exp(l*/kT) q = exp( - E o /  k T ) .  (3.2) 

We assume throughout this section that 141 < 1, in which case z extends as an entire 
function in y. When expanding z in a power series in y ,  each coefficient gives the 
partition function in the canonical ensemble with a fixed number N of particles 

The label s is attached to the occupied one-particle levels arranged according to 
increasing energy. Each configuration of N fermions can be thought of as an excitation 
on a ground state, where the fiist N levels are occupied, with minimal energy 
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Er=-; ( 2 n  + 1) = E ~ N ' .  n t i s  justifies writing 2 n , +  1 = 2s - 1 +21, ;  O S  1 2 < .  . . S  I N ,  
and 

a; 
N N2 c q2=s.N_1's. z ( y ;  4 ) =  c Y 4 

o < i , = f 2 . . . s l k  N =O 

The last sum is readily performed first on l;, then I N _ , ,  . . . , with the result 
X Lc 

(3.4) z ( Y ; ~ ) =  n ( i + y q 2 " + l ) = i +  C y N N2 [(1-42)(1-q4)...(1-q2N)]-1 
f l = O  N = l  

which is a classical identity due to Euler. 
Consider now the same problem with fermions and antifermions of opposite 

chemical potential, so that the conserved quantity is the number of fermions minus 
the number of antifermions. The partition function is then obviously (assuming y # 0) 

Lc 

Z ( y ;  q )  = z ( y ;  q)z(y- ' ;  q )  = n (1 +yq2"+')( 1 + y - l q 2 n + l ) .  (3.5) 
n =O 

We are interested in the (Laurent) expansion 

Obviously z N ( q )  = Z_,(q), so that it is sufficient to study the case N 3 0. As always 
when dealing with antifermions, it is convenient to introduce negative single-particle 
energy states. The neutral vacuum, or reference state in Fock space, has all its 
one-particle negative-energy states occupied. Any Fock state can then be described 
by enumerating some filled positive-energy states (particles) and holes in the negative- 
energy sea (antiparticles). In particular, in the sector of positive fermionic charge 
N 3 1, the lowest total energy state implies the occupancy of the first N one-particle 
states (E,,, = and excitations above that level are described in identical terms 
to those above the ground state. This proves that 

Z , ( q )  = Z-,(q) = q N Z Z 0 ( q ) .  (3.7) 
We can relate any neutral excited state to the Fock vacuum by setting a correspondence 
between one-particle occupied states of decreasing energy (see figure 2 ) .  Neutrality 
and finite total energy of excitation ensure that, far enough down the ladder, the 
corresponding occupied levels have equal energies, and 

E = 2 ~ ~ ( r , + 7 ~ + .  . .) 
with r ,  2 r 2 B  r 3 . .  . S O .  The sum being finite, only a finite number of r are strictly 
positive. Hence each partition of the integer E / 2 c 0  is in one-to-one correspondence 
with a neutral state of energy E. Denoting by cyk the number of r equal to k, we have 

which is Euler's generating function for partitions. Collecting our results, we find 
Jacobi's triple product identity in the form 

We have dropped the subscript 3 in the notation for the elliptic form O(y;  4). 
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+--i 
Figure 2. Correspondence between occupied states in the neutral sector, leading to (3.8). 

The next step is to introduce, besides fermions and antifermions, bosons and 
antibosons with equal chemical potentials in absolute value, again in the same harmonic 
well. The complete partition function is 

(3.10) 

This is a meromorphic function in the complex y plane, with the origin deleted, and 
the last series is valid for 141 < ly/ < 1qI-l. Furthermore 

E(q2y;  q )  = - q y ;  9 ) .  (3.11) 

The integral 

encircles once the simple pole of S ( y ;  q )  at y = q. Cauchy's residue theorem, together 
with (3.1 1 1 ,  yields 

and therefore 

an identity again due to Jacobi, valid in the annulus /q1< lyl< 1qI-l. 

one finds 
We can now make contact with the degeneracy problem. Setting y =  1 in (3.12), 

(3.13) 
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The remark, due to Euler, that 

(1 - qZk-1)( 1 - q’k)( 1 + qk) X fl (1-q2k-1)(1+qk)= fl = 1  (3.14) 
k = l  k = l  

allows one to rewrite the left-hand side of (3.13) as 

which is recognised from identity (3.9) as e( 1; q ) 2 .  Therefore 

(3.15) 

Returning to (3.12), we identify the coefficient of yo  on both sides of the relation 
1 = S ( y ;  q ’ / 2 ) S ( - y ;  q l / ’ ) ,  with the result that 

(3.16) 

Making use again of (3.9) and (3.14), we have that 

Inserting this in (3.16), and changing q to -9, yields 

q N  U: 

e(1; q ) 4 = l + 8  
N = l  [1+(-q)N]2’ 

Expanding each denominator on the right-hand side and summing in the opposite 
order leads to the alternate form 

Finally in the study of the equilateral triangle we shall also use the identity 

A h ) =  a; q ) e ( l ;  q 3 ) + q m ;  dm3; q 3 )  

(3.17) 

(3.18) 

which is equivalent to arithmetic statements on the divisors of n:+ n: -  n,n2 [6, 11-14]. 
A four-dimensional generalisation, analogous to (3. l?), is 

A straightforward proof of (3.18) and (3.19) is given in the appendix. 

4. Two-dimensional degeneracies 

We will study in parallel the spectrum of the square and equilateral triangle, when 
necessary using as subscripts the symbols 0 and A. Our presentation is patterned 
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after the book of Blanchard [15]. Dropping dimensional factors, the energies are given 

E c l ( n l ,  n 2 ) = n : + n :  n , > 0 ,  n 2 > 0  ( 4 . 1 ~ )  

E,( n , ,  n2)  = n: + n: - nlnz  (4 . lb)  

so that the energies are themselves integers. In the square case, when n,  # n2, the two 
states ( n , ,  n2)  and ( n 2 ,  n , )  are obviously degenerate. A compilation of the first few 
levels reveals that many other degeneracies occur. It will be convenient to adopt the 
following conventions and  notations. We will write b( E )  for the degeneracy (multi- 
plicity) of level E, while D( E )  will be equal to b( E )  if E is not a square, and equal 
to D ( E ) + l  if E is a square. It will be easier to work analytically with D ( E )  while 
numerical data will be provided for @ E ) .  The distinction will be irrelevant for all 
asymptotic formulae to be discussed, and  the corrections can easily be supplied. A 
bar on related quantities will similarly mean the replacement of D ( E )  by a(,??). By 
F ( d ,  E )  we shall mean 

(4.2) 

by 

n,  > n2> 0 

F ( d ,  E )  = E - '  x [number of values E ' S  E such that D( E ' )  = d] 

p k ( E ) = c  d k F ( d ,  E )  k z l  

and we will study the moments 

(4.3) 

The reason for introducing D ( E ) ,  rather than b ( E ) ,  appears immediately when we 
expand the right-hand side of (3 .15)  in a double series. We find 

50 

q k ( 3 + 4 1 ) ) .  (4.4) f q n 2 +  c q":+" := f ( q k ( l + 4 1 ) -  

n = l  n l . n 2 =  1 k = l  /=0 

The definition of D ( E )  implies then that it is the coefficient of q E  on both sides and  
we see that each divisor of E of the form 41+ 1 (respectively 41 + 3 )  contributes 1 ( - 1 )  
to D ( E ) .  Let us denote generically by p (respectively r )  the odd primes of the form 
41+ 1 (41+3). The product of two p or two r is of the form 41+ 1 while the product 
of a p and a r is of the form 41+3. Consequently, if the prime decomposition of Eo 
is 

Em = 2'ppP2p2"2. . . r f l r f 2 . .  . (4.5) 
then 

pI prime = 1 (mod 4), q, prime = 3 (mod 4) 

This states that & ( E )  is non-zero only in the case where all p are even, in which 
case it is given by the number of its odd divisors factorisable into primes = 1 (mod 4), 
a result which has its roots in the work of Fermat. Conversely from (4.6) one can 
derive (3.15). Thus the study of the D is a variant of the study of the number of 
divisors. The' formulae and results are quite similar. 

Using the same convention in the equilateral triangle case, it follows from (3 .18)  
that (4.6) also holds true, provided we take the p ( I )  to be primes of the form 31+ 1 
(31+2), and 

E ,  = 3"ppPip2"2 . . . r f l r f 2 .  . . (4.7) pl prime= 1 (mod 3) ,  rj prime = 2 (mod 3) .  
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In spite of being very explicit, the formula for D( E )  is not as informative as one might 
hope, being related to ~ ( x ) ,  the number of primes less or equal to x, which behaves 
for large x as Li(x) [ l l ,  121 

If Riemann’s hypothesis is true, then the corrections to (4.8) are of the type T(x) -  
Li(x) = 0(x1”  In x). One route to obtain (4.8) is to follow Riemann in studying the 
function 

“ 1  
l(s)= y= fl ( l -p-’)- l .  

n = i  n pprime 
(4.9) 

Both sum and product converge absolutely for Re s > 1,  and l( s )  extends as a meromor- 
phic function in the entire s plane, with a unique simple pole of unit residue at s = 1 .  
Similarly in the degeneracy problem we introduce the Dirichlet series [ 151 

(4.10) 

for all non-negative integers k, which will allow us to obtain the behaviour of all 
moments & ( E ) ,  defined in (4.3), for large E. Obviously for very small values of E, 
the explicit expression (4.6) is quite sufficient. The latter enables one to express 7 ) k ( s )  

as infinite products over primes: 

1 
(4.1 16) Pk(P- ’ )  

vka(s) =- s k + l  n - (1-p- ) rprime 1 - F 2 ”  
p = l  (mod 3) r-2 (mod 3)  

These expressions introduce a family of polynomials Pk(x) defined through 

Po is equal to one, while for k 3 1,  Pk(x) is a polynomial of degree k - 1 with integral 
coefficients 

(4.13) 

The immediate consequences of (4.12) are the relations 

Pk+] (x)  = ( kx + 1 ) Pk (x)  f x(  1 - x)  Pk( x)  ( 4 . 1 4 ~ )  

(4.146) 

exp[ - ( k -  l)e]Pk(-exp(2e)) = (cosh O)k+l(dk/dek) tanh e. ( 4 . 1 4 ~ )  



Degeneracies in simple quantum systems 22 1 

It follows that Pk(x) is a reciprocal polynomial [Pk(x) = Xk-’Pk(X-’)] and has its zeros 
on the negative real axis. A table of the first few pk is as follows: 

Po’l 

PI = 1 

P , = l + x  

P 3 =  1+4x+x* 

To use the Dirichlet series vk(s), 
estimate of the moments, one may 

P4=1+11x+11x~+x3 

Ps = 1 + 26x + 66x2 + 26x3 + x4 
(4.15) 

P6 = 1 + 57x + 302x2+ 302x3 + 57x4+ x5. 

obviously analytic for Re s large enough, in the 
proceed as follows. First we express &(E) ,  using 

a representation of the step function, as 

(4.16) 

with c in the analyticity domain. Then we displace the contour to the left until we hit 
a singularity in vk(s). The latter will occur at s = 1 ,  as a pole for k 2 1 or a branch 
point for k = 0 ,  as will follow from the representation (4.11). The contribution from 
this leading singularity will yield the dominant behaviour of F ~ ( E )  for large E. 
Alternatively, and  more sloppily, one may observe that a behaviour p k ( E )  - u(ln E ) Y  
corresponds for T)k(s) to a singularity of the type aj:dn(ln n)’n-’= 
a T ( y +  l ) ( s  - l)-’-’. Whichever way, we need the rightmost singularity of T]k(S). 

To illustrate the method consider first v l (s) .  Then one derives from (4.11) 

v1(s) = S(S)L(S) (4.17) 

with 

. .  
p- I  (mod4) r = 3  (mod41 

r - 2  (mod  3 )  

1 

( 4 . 1 8 ~ )  

(4.18 b )  

In both cases L ( s )  is analytic at least for Re s > 0, and  

L ( l ) =  ~ / 4  LA( 1) = rr/3’l2. (4.19) 

Consequently v l ( s )  is meromorphic for Re s > O  with a unique pole at s =  1 with 
known residue. This leads at once to the estimates 

p I . J ( ~ )  - 4 4  P l , m  - 4 3 3 / 2  (4.20) 

which of course agree with the Weyl estimate for the leading behaviour of the integrated 
density of levels. Corrections to (4.20) are available and will be discussed later. 
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We turn to p o ( E ) ,  the quantity discussed by Berry [2]. Comparison of ql(s) and 
q o ( s )  given by (4.11) yields 

11 
rnrime 

(4.21 a )  

(4.21b) 

The products converge to the right of Re s = $ and hence cannot vanish in this region, 
so that one can take their square root. From the expression (4.17) we therefore deduce 
that q o ( s )  has a branch point at s = 1 .  Now we introduce the quantities 

A, = n ( 1  - r - 2 )  A ,=  n ( l - r - 2 ) .  (4.22) 
r=3(mod4)  r=2(mod3)  

Then 

P ~ , ~ ( E )  - (2A& po,,(E) - ( 2 h  AA In E ) - ” 2 .  (4.23) 

This means that, far from occupying rather uniformly the integers, the levels are highly 
degenerate and leave huge unoccupied holes. Asymptotically the probability that an 
integer belongs to the spectrum is zero! 

The corrections to the estimates (4.20) are a priori of relative order (In E ) - ’ ,  and 
this will also be true for those pertaining to higher moments. Those arise from the 
finite terms of q l ( s )  at s = 1 ,  once the pole is extracted. This is why we choose (In E)-’ 
as the abscissa on figure 3, where we plot po(E)(ln E)’/’ as a function of (In E)-’ for 
E up to lo6. The asymptotic results are marked by arrows. 

Figure 3. Plot of p,(E)( ln againzt (In E ) - ’  for the square (full curve) and the 
equilateral triangle (broken curve), up to values of E equal to lo6. The arrows indicate 
the asymptotic limits (see (4.23)-(4.27)). 



Degeneracies in simple quantum systems 223 

For the second moment we note that 

(4 .24a)  

(4.246) 

which yield 

F2 ,dE)  -$In E F2,a(E) - a  In E. (4.25) 

It would be interesting to find a shorter derivation of these simple results. 
For larger k values it is advantageous to replace the polynomial & ( x )  by 

Q k (  x )  = ( 1 - X ) 2 k - k - 1  pk( x )  (4.26) 

where the prefactor ensures that Qk(x)  = 1 + O(x2) around x = 0. Similar manipulations 
as above yield 

(4.276) 

( 4 . 2 7 ~ )  
p i( mod 3)  

The rapid growth of P k ( E )  in (In is quite remarkable. We should, of course, 
insist on the fact that these expressions are valid for k fixed and E going to infinity. 
Figures 4 and 5 show the convergence of fi2(E)(ln E ) - '  and p.,(E)(ln E ) - 3  towards 

c 

0.2 1 

0 0.1 0.2 
(LnEI-' 

Figure 4. Same as figure 3,  for &(E)(ln I?)-' 
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x10- ’  

their limits as functions of (In E ) - ’ .  As k increases P,(E)(ln 
P k  slower and slower. 

coefficients P k  in (4.27) up to k = 4. All products are over primes. 

tends to its limit 

We recapitulate in the following table the expressions and numerical values of the 

U 

po (2A,)-1’2 = 0.764 224 
p1 n / 4  = 0.785 398 

(2 x 31’2A,)-’’2 = 0.638 909 
n/33’2 = 0.604 600 

p 2  1/4 = 0.250 000 1/6 =0.166 667 
n4A; 22n4 n ( 1  -p-’)4( 1 + 4 p - ’ + p - 7  - A i  n (1-p-1)4(1+4p-’+p-2)  

” 212x3 o - l ( m o d 4 )  3” ~ = l ( m o d 3 )  

= 3.3438 X = 1.8032 x 
?PA: 23 n8 

P4 ~ n ( l - p - ‘ ) ’ l  A: n (1 -p”)” 
2257! p - l ( m o d 4 )  3 2 1 x 5 x 7  p e l ( m o d 3 )  

x ( 1 + l l p - ‘ + l l p - 2 + p - 3 ) =  1 . 3 0 6 6 ~  lo-’ ~ ( i + i i p - ~ + i i p - ~ t p - ~ ) = ~ . 4 0 ~ ~ 1 0 - ~  

We return to (4.2) where all corrections can be supplied explicitly. Define the integrated 
density of states 

( 4 . 2 8 ~ )  

HA( E )  = 1 +6Epl,n(E) = 1 + 6[E”’] +6EPl, ,(E) 
(4.286) 

2T 
= f B(E - Iln11’) = p E + E1’4*A(E). 

n 1 , n 2 = - x  

The symbol [ E ]  stands for the integer part, and (nl*= n:+n:, I l n l l ’ = n ? + n : - n ~ n , .  
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The factorisation of E l i 4  in the correction term is suggested by the following exact 
expressions, obtained through Poisson’s summation formula: 

( 4 . 2 9 4  

(4.29b) 

where the Bessel function J , (z)  behaves as ( ~ / T Z ) ” *  sin(z- x / 4 )  for large z. The 
functions E )  and PA( E )  are represented in figures 6 and 7 for 0 s  E G 300. 

5.0 j 
i 

- 3 . 0 1  

0 60 120 I a0 240 300 
E 

Figure 6. Oscillatory amplitude q3( E )  in the integrated level density of the square, up to 
E = 300. 

E 

Figure 7. Same as figure 6, for the equilateral triangle. 
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Note the large oscillations of these functions for values of E as small as a few 
hundreds. Figure 8 shows a plot of the quantity -Inf,.,, “ ( E ’ )  against In E for 
E S lo7 for the square and the triangle, suggesting that ‘If( E )  = O(ln E ) .  As far as we 
know, it has not been proven that “ ( E )  = O ( E S )  for every positive 6. The quantity 

* ( E ’ )  grows much more slowly than In E ;  we shall not discuss it here. 
To close this section we examine two other aspects of the distribution of 

degeneracies, F ( d ,  E ) ,  namely its behaviour at  fixed d, when E gets large, and the 
maximal degeneracy D,,,(E) of those energy levels smaller than or equal to E. To 
illustrate the first point consider F ( 2 ,  E ) .  To estimate this quantity, for instance in 
the square case, define w ( n )  = 1 if D( n) = 2 and 0 otherwise, then 

- c P - 3 )  n ~ (4.30) 

According to (4.8) the number of primes up  to x is asymptotically x/ln(x/e).  Since 
those which have a residue l (mod 4) constitute asymptotically half of them [ 161, then 

1 
n = l  n s  l-2-’ pprime rprime 1 - r-”’ f M - +  p a l ( m o d 4 )  r = 3 ( m o d 4 )  

(4.31) 

Consequently 
1 
E n s ~  

E,(2, E )  =- 1 wg(n) - (Ao  In E)-’  = 1.168 07 (In E)-’ .  (4.32a) 

Using a similar property of primes E l (mod 3), we obtain 
1 

F,(2, E )  =- E n s ~  
wa(n)-$(AA In E ) - ’ =  1.060 54 (In E)-’ .  (4.32b) 

For larger even values of d one can also show that F ( d ,  E )  behaves as 

10.0 r 

I / 

r -- 
6.0 ,- - I I ,f/ 

“1 1 

0 4.0 8.0 12 0 16 0 20.0 
I n €  

Figure 8. Plot of -1nf Y(E) as function of In E, for E up to IO’. The full curve refers to 
the square, the broken curve to the equilateral triangle. The straight line with slope $ is a 
guide for the eye. 
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(In E)-’(ln(ln where S ( d )  is a positive, d-dependent integer: S(2)  = 0, S(4) = 
1 , .  . .. On the other hand, F ( d ,  E )  decreases much faster, like E - ” 2 ,  for odd d, since 
odd degeneracies occur only for values of E which are squares, as follows from (4.6). 

These estimates suggest that the most likely degeneracy up  to some value E, i.e. 
the value of d which maximises F ( d ,  E ) ,  grows to infinity extremely slowly. For 
instance, up  to E = lo6, the most likely degeneracy is still 2. This value d = 2 is obtained 
103 326 times for the square and 94 885 times for the triangle, for 1 s E s lo6. On the 
other hand, d = 0, i.e. absence of level, occurs respectively 784 092 and 819 600 times 
in the same range. 

Finally we turn to an  evaluation of the largest degeneracy D,,,(E)= 
D ( E ’ )  occurring in the range 1 to E. From (4.6) it is reasonable to assume 

that the values of E generating the largest degeneracies are of the form E, = 
5 x 13 X .  . . p,, i.e. the products of the first q primes = l (mod  4) in the square case, o r  
E, = 7 x 13 x . . . p,, i.e. the first q primes = l(mod 3 )  in the equilateral case. The corre- 
sponding degeneracy is 2“ with 

(using again the fact that asymptotically half the primes belong to these congruences). 
Then 

9 - ;p,/w p,/e) (4.33) 

and 
In 2 

ln((2/e) In E )  
(In E - C) lnDmax(E)- 

(4.34) 

(4.35) 

with a certain constant C. Hardy and Wright [ l l ]  give a rigorous version of this 
argument in the similar case of the divisors, which leads to an identical result. 
Numerical data shown on figure 9 are in excellent agreement with (4.35). We plot 
In &,,,(E) ln((2/e) In E )  against In E for E < 2 x 10’. The straight line has slope In 2. 

I n €  

Figure 9. Plot of In DmaX(E) ln((2/e) In E )  against In E for E up to 2 x 10’. Full curve: 
square; broken curve: equilateral triangle. The straight line has slope In 2 (see (4.35)). 
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5. Examples in three and four dimensions 

In a cube, the energy levels, in units h2.n2/2ma2, are given by 

E = ( n : +  n:+ n: )  n , ,  n,, n3 positive integers. (5.1) 

The number of levels up to E grows like E3’2.  More precisely the function 

H (  E ) = f O (  E - n: - n: - n:)  = 8R3( E )  + 1 2R2( E)  + 6R1( E )  + 1 (5.2) 
n ,n2 ,n3 = --cc 

counts 8 times the three-dimensional levels, adds 12 times those of the corresponding 
square box, 6 times the one-dimensional spectrum and finally adds unity. In 0 4, we 
discussed f i 2  which behaves as E, and of course H , ( E )  = [ E ” 2 ] .  We have 

with (5.3) 

and / m 1 2 = m : + m : + m : .  
As before, we study the moments of the degeneracy distribution 

(5.4) 

where D again refers to the true Dirichlet problem, while D will admit the possibility 
that some of the n, in (5.1) vanish. The difference is immaterial for the asymptotic 
properties. Equation (5.3) contains the estimate 

~ , ( E ) - / . ~ , ( E ) - ~ ~ T E ” ~  (5.5) 

and suggests that 

H ( E )  - : T E ~ ~ ~ = O ( E ” ~ ) .  

Arithmetical properties on sums of three squares are not easily accessible except 
for the following result, due to Gauss and Eisenstein [ 11, 121, that the complementary 
of the spectrum is described as 

D ( n )  = O @ n  =4“(8b+7)  a, b 5 0. (5.6) 

As a consequence F ( 0 ,  E )  has a non-zero limit as E + ~3 

obtained by setting successively a = 0, 1 ,2 , .  . . , in (5.6). In other words, the spectrum 
only occupies 2 of the integers. 

Except perhaps for finer details, the distribution of degeneracies investigated 
numerically seems well described by the statement that (5.5) gives the unique scale 
for large E, in contradistinction with the two-dimensional cases. We conjecture that 

(5.8) pk ( E ) - C k P I  ( E 
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and we speculate that one can find a limiting distribution function K(x)  

K ( 0 )  = F ( 0 )  =; K ( m )  = 1. 
(5.9) 

We insist on the speculative character of (5 .9)  which, if true, would yield the coefficients 
ck in ( 5 . 8 )  as moments of dK(x) .  From the data we obtained the plot of figure 10. 
In particular the value at the origin agrees satisfactorily with the prediction (5 .7) .  It 
would be desirable to find an analytic expression for the scaling function K(x) .  The 
data suggest a peak in the derivative dK/dx  at some value of x around the expectation 

One could now study other integrable systems in three dimensions. Coxeter [ 7 ]  
classifies three irreducible simplices, all derived from the cube, which are likely to 
exhibit similar properties as those described above. 

We have chosen to compare them with another commensurate reducible case 
obtained by choosing appropriately the sides in a rectangular prism with base an 
equilateral triangle (ratio of height to base side = :), as shown in figure 11. If a is the 
height, and in units of h2.rr2/2ma2, the energies are given by 

~ = n : + n : - n , n , + n :  n ,  > n ,  > 0,  n3 > 0. (5.10) 

(x) = q =  1. 

It is readily found that 

(5.11) 

and the ratio of this value to the one pertaining to the cube is the ratio of their 
volumes = 4 x 3-3’2. Again there exists asymptotically a finite fraction of integers not 
belonging to the spectrum. We have 

(5.12) n = 9”(96  + 6 ) 3  D( n )  = 0. 

1.0 2.0 3.0 4 .O 5.0 0 
X 

Figure 10. Scaling function R(x) = K ( x )  for the degeneracies of levels in the cube, defined 
in (5.9). Note the value K(Oj=& 
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a 

+ * 
&ai3  

Figure 11. Rectangular prism leading to an integrable commensurate system. 

Modulo 9, n: takes the values 0, 1, 3, 4 and 7, while n:+ n: - n1n2 takes the values 0, 
1, 4 and 7. Upon addition all numbers but 6 are represented. If now n = 0 (mod 9) 
belongs to the spectrum, by enumeration it is seen that both n: and n;+ n:- n1n2 are 
zero (mod 9); hence n3 = 0 (mod 3) and n, n2= 0, 3(mOd 9), so that n, and n2 are 
also divisible by 3. We can therefore repeat the argument with n1/3, n 2 / 3 ,  n3/3 until 
the energy has no divisor equal to 9, in which case its residue mod9 is a number 
different from 0 and 6. This proves (5.12). As a consequence, in the limit E + CO, there 
exists a finite probability F ( 0 )  for an integer not to belong to the spectrum, and 
according to (5.12) it is greater than or equal to 4Z;P 1/9" =$: 

(5.13) 

We suspect that limE+m P(0, E )  = P(0) is equal to Q. Figure 12 is a plot of F ( 0 ,  E )  
as a function of E- ' ,  comparing the behaviour for the cube (full curve) and the prism 
(broken curve), with the limits a and Q shown by arrows. A scaling function, analogous 
to K ( x )  introduced in (5.9) for the cube, can also be conjectured for the prism, up to 
a change in the numerical coefficient to normalise the first moment to unity. We 
postpone a discussion of the maximal degeneracy to the end of this season. 

In a four-dimensional hypercube, the levels are sums of four squares 

lim Inf F(o, E )  3 Q. 

E = n : + n : + n : + n :  ni > 0. (5.14) 

As before, D ( E )  denotes the degeneracy, while 16D(E) will stand for the coefficient 
of q E  ( E  3 1) on the right-hand side of equation (3.17): D ( n )  is half the sum of the 
divisors of n which are not multiples of 4[dln or d f n  stands for d does or does not 
divide n] 

(5.15) 

The difference between D ( n )  and @n), which affects only boundary subdominant 
terms, can be made explicit by splitting appropriately the quadruple sum 

. The quantity D ( n )  is closely related to the classical function u(n), T~ n :+ n :+ n: + n: 



Degeneracies in simple quantum systems 23 1 

0 0.4 0.8 1.2 1.6 2.0 .10-3 
E - 1  

Figure 12. Plot of F(0, E )  against E-’ for the cube (full curve) and the prism (broken 
curve); the arrows indicate the respective limits 4 and (the latter being only a conjecture). 

the sums of divisors of n ( 1  and n included) 

dln 

u ( n ) =  d (5 .16)  

and of course the treatment of both is closely parallel. If n is factorised over primes 
as 

n = 2 “  n p a  
poddprime 

(5 .17)  

then 
p e + 1 -  1 

D ( n ) = ; ( 3 - 2 6 , 0 )  JJ -. (5 .18)  
poddprime p - 1  

Hence 

D ( n )  1 1 + 2 ’ - *  
n = l  n* 2 1 -2-’ 

r ] , ( s ) =  - 

=;(1-22-2”)5(s))5(s-  1 ) .  (5.19) 

This function has a leading singularity (a  pole) at s = 2, with a residue equal to 
3 5 ( 2 ) / 8  = .rr2/16. Using similar arguments as in the previous section, we deduce that 
the first moment p , ( E )  is given by 

(5 .20)  

which is of course an asymptotic estimate for 1 / 1 6 E  times the number of points with 
integral coordinates inside a sphere of radius & in four dimensions. The Fermat- 
Lagrange theorem asserts that every integer can be written as a sum of four squares, 
which translates into 

PO(E)’ 1 .  (5 .21)  

PI ( E  - ( T 2 / 3 2 )  E 
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From (5.18) we can also estimate the second and higher moments. For instance we 
find for 77’(s) 

m 

I n’ poddprime a = O  \ p -  1 

1 (i+23-s)(1-22-5)(1 - 2 9  5 ( s -2 ) i2 ( s -  I ) ~ ( s )  
4 1 + 21-s 5(2s - 2) 

- _  - 

The leading singularity is a simple pole at s = 3 with a residue 25(3). Hence 

P z ( J 5 )  - 8 5(3) E ’ =  0.150 257 113 E’. 

(5.22) 

(5.23) 

Higher order series will introduce new polynomials, as in the two-dimensional case, 
We quote the result for ~ ~ ( s ) :  

Os D3(n)  
773(s) = c 

- _  1 ( i + i 3 ~ 2 ~ - ~ ) ( 1 - 2 ~ - ~ ) ( 1 - 2 ~ - ~ ) ( 1 - 2 ~ - ~ )  - 
8 (1 + 3  x 22-s +23-25 1 
x n [ 1 + 2p2-’( 1 + p - ’ )  + p 3 - ’ ’ ] 5 ( s  - 3 ) 5 ( ~  - 2)5(s - 1 ) 5 ( ~ )  (5.24) 

p prime 

leading to 

p 3 ( E ) - -  147 ( n ( ~ + 2 ~ ~ ’ + 2 ~ - ’ + ~ ~ ’ ) ) 5 ( 2 ) 5 ( 3 ) ~ ( 4 )  E 3  (5.25) 
9728 pprime 

-0.091 712 E3.  

Very much as in the three-dimensional case, p I ( E )  defines the only scale, and it can 
be easily proven that 

(5.26) 

p 2 ( E ) / p ; ( E ) - +  1.579 56= c2 p3(E)/p:(E)+3.1259 = c3. 

All these limiting ratios are exactly computable. A scaling function K ( x ) ,  shown in 
figure 13, and defined in analogy with (5.9) 

has ck for moments 

(5.27) 

(5.28) 

We have only shown here that the left-hand side exists in four dimensions. But we 
conjecture that the existence of a limit law K ( x )  is general for integrable systems of 
the type discussed in this paper, in any dimension larger than two. 
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X 

Figure 13. Scaling function K ( x )  for the distribution of degeneracies in the four- 
dimensional hypercube (see (5.27)).  

Finally we come to the discussion of the largest degeneracy encountered up to 
$U( n), with E :  DmaX(E). For the four-dimensional hypercube we observe that D( n )  

equality if and only if n is not =O(mod 4). For a ( n )  one can show [ l l ]  that 

= eY f f ( n )  
n ln(1n n )  

lim Sup (5.29) 

where y is Euler’s constant. Thus in our case it is likely that 
Dmax( E ) / E  - fey In(h  E )  ( 4 D )  (5.30) 

Figure 14. Plot of Dmax(E) E-”2  against In(ln E )  for the levels in a cube. The straight 
line has a slope U = 1.30. 
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t 
1 

2.0 

0 1.0 2 0  
I n i l n E l  

Figure 15. Plot of DmaX(E)E-’ against In(1n E )  for the levels in a four-dimensional 
hypercube. The straight line has a slope $eY (see (5.30)), y being Euler’s constant. 

which shows that D,,,(E) grows slightly faster than the natural scale p l ( E ) -  
( r2/32)  E. 

This suggests the conjecture that, in any dimension larger than two, the ratio 
Dmax(E)/pI(E) behaves as ln(1n E ) ,  and for instance that in three dimensions 

Dm,x(E)E-1’2- a ln(1n E )  (3D). (5.31) 

Figures 14 and 15 show respectively the quantities Dm,,(E)E-”2 for the cube and 
D , , , ( E ) E - ’  for the hypercube, as functions of ln(1n E ) .  The two curves look very 
similar. The straight line in figure 15 has the slope of (5.30): $eY, while in figure 14 
we have a rough measurement a = 1.30, which we are unable to obtain analytically. 

What has been said in the case of the hypercube could be repeated in the case of 
a four-dimensional box equal to the Cartesian product of equal equilateral triangles 
in two orthogonal 2-planes. The reasoning would be based on (3.19) for the generating 
function A 2 ( q ) .  In particular the Fermat-Lagrange theorem also holds in this case. 

6. Concluding remarks 

We have certainly not exhausted the subject of ’accidental’ degeneracies (this is really 
a misnomer) in simple integrable systems. On the mathematical side, a large amount 
of results and guesses need clarification, although some might be discussed in the 
literature. One could systematically go through the list of dimensions and fundamental 
domains. We did not investigate systems in dimensions greater than four: could it be 
that the scaling functions K ( x )  assume a simple form as d + OO? Odd dimensions offer 
notorious mathematical difficulties. It would also certainly be desirable to off er ‘simple’ 
derivations of some of the relevant arithmetic identities, as was initiated in Q 3. 

We have observed that certain regularities are present. Clearly two is a ‘lower 
critical dimension’ with interesting ‘sparsity’ effects, and four is an upper one. In three 
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dimensions, a finite fraction of the integers is not represented in the spectrum, this 
fraction being given by a simple rational expression. 

Unfortunately we did not answer the question of characterising ‘physically’ the 
degeneracies in terms of some hidden invariance. The only simple remark is that one 
can ascertain a priori that, for every level E, we also have a level n 2 E  for every integer 
n, since we can fit in the boxes that we consider boxes of size reduced by n and extend 
a wavefunction in any one of them by reflections in the original one. Other results, 
such as (4.25), also suggest an underlying simple explanation. 

Are these degeneracies, and some of their curious properties, particularly in two 
dimensions, physically observable? One could, for instance, think of a peculiar sensitiv- 
ity to random perturbations. Take the case of a localised perturbation around a point 
xo with intensity A. To lowest order, among D degenerate levels, one is displaced by 
an amount SE ~po(xo)12, where cp,(x) runs over an orthonormal basis of 
wavefunctions in the degenerate subspace. As xo describes the domain B, the quantity 
SE fluctuates around its mean value ( S E )  = AD/ V where V is the volume of B. The 
proportionality to D is a sign that large degeneracies will enhance the sensitivity to 
small perturbations. 

Another question, which is related to the previous one, is to ask for a remnant of 
such clusterings in the spectrum of slightly deformed systems. 

In any case, it is of some value to be aware of the amount of order and chaos in 
the most elementary spectra, if only to be able to evaluate the distinction with 
non-integrable systems. It would be of great interest in this respect to get a handle on 
those of the family of pseudo-integrable billiards discussed by Berry and his col- 
laborators. 
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Appendix 

Our aim is to give a derivation of (3.18) and (3.19). The left-hand side of (3.18) reads 

(‘41) 

where the quadratic form in integers gives the square modulus of ( m + j n ) ,  j =  
exp(2iv/3), i.e. the squared distance to the origin of the points of an equilateral 
triangular lattice. 

It is well known that a three-dimensional cubic lattice has, perpendicular to the 
direction ( 1  1 l), a sequence of planes ABCABC . . . where A is a triangular lattice and 
B and C, projected on the plane x + y + z = 0, are respectively the centres of up or 
down triangles. This suggests that we introduce, besides A ( q ) ,  the quantity 

~ ( ~ 1  = c q m 2 + n 2 + m n  - - q(n:+n:+n:-n,n,-n,n,-n3nl)/3 

m, n n , + n , + n , = o  

(‘42) 
= q(n:+n:+n:-nln2-n2n,-n,n,)/3 

n , + n 2 + n 3 =  1 

The analogous quantity A - l ( q ) ,  which would correspond to the plane n ,  + nz+ n3 = -1, 
is equal to A l ( q ) .  Also A , ( q )  is only well defined once a choice of a cubic root of q 
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has been made. This will be implied in the following. We can therefore write the 
following identity 

0 3 ( ~ ;  q )  = 
ynl+"2+"3 4 n:+n:+n: 

nl9n2.n3 

X 30 

1 3 p + l  (3p+1j2/3 3 p + 2  ( 3 p + 2 j 2 / 3  =A(q2)  c y3Pq3P2+Al(q2) c ( Y  4 +Y 9 
p = - x  p = - x  

= A ( q 2 ) @ ( y 3 ;  q3)  + Al(qz)q"3[Y@(Y3q2; q 3 )  + y2q@(.Y3q4; q3)1. (A3) 
This readily follows by slicing the cubic lattice in planes ABCABC. . . and expressing 
the squared distance to the origin as the sum of squared distances from the origin to 
its projection in the plane and from this projection to the lattice point in the plane. 
As a consequence, the Laurent series for 

F(y;  4 )  = @ ( - y ;  d 3 / O ( - y 3 ;  q3)  (A4) 
will only have A($) as a term of degree zero in y ,  since the remaining two terms are 
respectively multiplied by j and j 2  when y is changed into j y .  It reads 

e= 

F ( y ;  4 ) = A ( q 2 ) +  c F n ( q ) [ Y " + Y - " I  ('45) 
n = l  

and converges for 141 < ly/ < 1qI-l. We compute the coefficients F n ( q )  using the same 
technique as in 0 3, namely Cauchy's theorem, based on the fact that F ( y q 2 ;  q )  = 
F ( y ;  q ) ,  which follows from (3.9), the key identity. In the ring ) q I 2 s  lyl d 1, F has 
two simple poles at y = j q  and j 2 q  and a double zero at y = q. Since @ ( - j 2 q ;  q )  = 
e(  - ( l / j q ) q ' ;  q )  = --j@(-l/jq; q )  = - j@(- jq;  q ) ,  we have @(- j2q ;  q ) 3  = -@(- jq;  q ) 3 ;  
hence 

From (3.9) again 
m a 

e ( - jq ;  q )  = ( I  - j 2 )  fl ( 1  - q 2 " ) ( 1  -jq2")(1 -j 'q '")= ( 1  - j 2 )  n ( 1  - q 6 " ) .  (A71 
n = l  n = l  

Also 
O i f n = O  (mod3) 
1 if n = 1 (mod 3)  (A8) 

-1  if n = -1  (mod 3). 

j 2 "  - j "  = ( j 2  - j )  x 

Combining this information, we find 

As was said before, the right-hand side only converges for /q1< lyl< / q f l .  To exploit 
the fact that F vanishes for y = q, which will yield the expression of A(q2), we have 
to continue analytically by exhibiting the poles at y = j q  and j'q. This is achieved by 
rewriting (A9) as 
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We can now set y = q. The left-hand side vanishes. Therefore, changing q2 into q 

Expanding the denominators and summing over n first yields the alternate expression 

We should have noted that, by rewriting m 2 +  n 2 +  mn as a(2m + n ) ' + : n 2  and separating 
in the sum (A12) even and odd terms in n, A ( q )  can be expressed also as 

~ ( ~ 1  = c q : ( Z m - n ) 2 + : n 2  - - e ( i ;  q ) w ;  q 3 ) + q e ( q ;  dm3, q3). ('413) 
m, n 

This completes the proof of (3.18).  We observe in passing that, since the distance gf 
a vertex to the centre of one of the three adjacent upward pointing triangles is 1/43, 
one has the relation 

A ( q )  =Nq3)+2A,(q3)  ('414) 

A I ( 4 )  = 41'3[6(1; q ) W ;  q 3 ) +  O(4; 4 ) 0 ( 4 ;  q3)1 

which enables one to obtain for A I  a relation similar to (A12) 

We turn now to a similar expression for A(q) ' .  Although one could proceed by squaring 
the identity (AlO), it is slightly easier to compute the logarithmic derivative of 

X X 

f(y) = W J P 2 ;  P2) = n (1 - q " ) ( l  - Y )  n [ ( I  -Yq")(l - Y - ' q " ) l  (A161 
n = 1  n = l  

i.e. 

We now square (A17), and use the identities, valid for m # n, 

1 + 1 - 1 
( y  - q " ) ( y  - q m )  - (4"  - qm)(r - 9 " )  

( y  - q " ) ( y - ' -  f) 

( q m  - q n ) ( Y  - q m )  

1 
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to write 

m f n  

The last two sums over m are respectively equal to - (n - 1) and -n. For ( q /  < ( y (  < (ql-', 
we then expand the denominators including y and resum in the opposite order, with 
the result that 

Consequently, noting that j "  + j - "  = 36,,0(mod3) - 1, from (A18) 

Taking finally into account that 

f -- nq" - 2 - 4" 
n = l l - q "  n = l ( l - q " ) 2  

we cast this result in the form 

which is the desired identity (3.19). It states that the coefficient of q N  in the expansion 
of A'(q), for N positive, is 12 times the sum of its divisors which are not multiples of 
three. Obviously the method used here could have been applied to O(1; q)4 by 
evaluating Cp2(i).  It would also seem possible to expres similarly higher powers of 
A ( 4 )  or  02(1; 4 ) .  We finally remark that A 1 ( q ) *  also has a simple expansion 
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